Operating at LF and MF

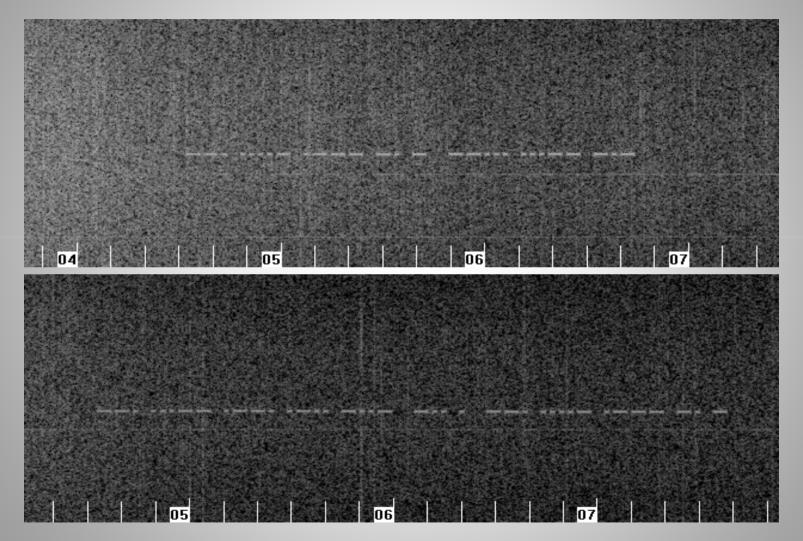
The Experimenters' Bands 137kHz and 475kHz

Andy Talbot G4JNT / G8IMR

A Bit of History

- In 1996 We got an allocation at 73kHz, with up to 1 Watt ERP allowed
- 14 Feb 1997, G3LDO and G3XDV had a "QSO" over 200 metres across a car park
 - but that's a capacitor!!!!
- ... so I started playing, first with a loop antenna, then a vertical, running 180 Watts from two Maplin audio amps in bridge.

A Bit more History


- ... And got 3km. This was a new record ! Soon extended to 8km.
- Then to 99.6km with G3YGF driving around with a portable receiver. All one-way so far
 - People were getting interested, others came on the band.
 - First "DX" Two way, G4JNT/G3LDO 57km 23 Aug 1997
- Then G3PLX came along and changed the rules completely

Going Narrow

- With a Motorola 56002 (DSP kit of that era) he made a narrow band spectrum analyser, showing a waterfall in bandwidths of milli-Hz
- I wrote software to send 40s dot length CW
- He received this at 393km
- SlowCW (now called QRSS) was born

They said "It isn't real amateur radio ..." they were wrong, of course.

31 July / 1 August 1997

Meanwhile – other stuff happened

- The Internet was new, and we set up one of the first user groups / reflectors. Exchanging ideas, and setting up skeds.
- Soundcards had arrived in PCs, and Richard Horne (a bird watcher) had written
 'SpectroGram' audio waterfall display and monitoring software. QRSS for all.

Tech Moves On

- VE2IQ Coherent
 - Error Corrected BPSK at 10 Bits/s
 - Dedicated hardware digitiser
- Soundcard software appeared
 - WOLF by KK7KA, 10BPS BPSK with better error correction
 - That and QRSS , first Transatlantic crossing on 73kHz by GOMRF et al.
 - 1kW Transmitter and vertical antenna using a church tower.

Rapid Progress

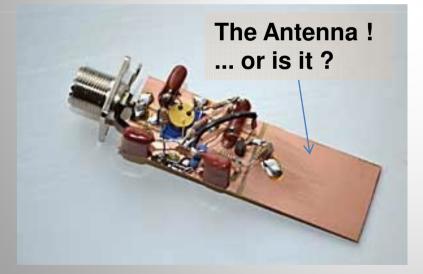
- The LF reflector was new, we'd never experienced such an effective real time exchange of ideas before.
- Everyone began to accept progress
- Old Decca transmitters appeared surplus, several stations got 1kW signals
- DX became the norm, although the UK was the only country that could transmit on 73kHz

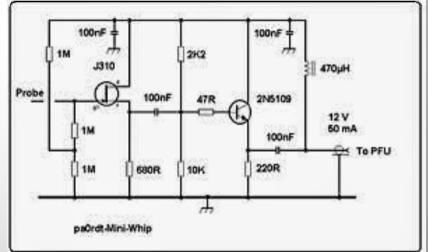
A New Band, and another

- The success on 73kHz spurred the authorities to give us a new allocation at 137kHz
 - Most of Europe, but unfortunately not the US
 - PCs, data modes and techniques continued improving, WSPR appeared.
- A few years later, marine use of 500kHz stopped and we got NoVs to play there.
 - I ran a 100 Watt CW / PSK31 Beacon for over a year.
- Replaced with a worldwide 475kHz allocation,
 - Firstly by NoV, then incorporated in the new licence

The Licence Allows :

135.7 to 137.8kHz 2100Hz
 − 1 watt ERP (you'll be lucky ☺)


- 472 to 479kHz 7000Hz
 - 5 watts EIRP (perhaps, if you work hard at it)
- No restrictions on modulation type,
 - Although voice isn't used


Equipment

- Receiving is dead-easy
 - Just about any general coverage amateur transceiver will go down to 470kHz at full spec.
 - Most cover 137kHz, although sensitivity may roll off
 - Any SDR that can do MF /HF will go down that far
 - Atmospheric noise is high, so noise figure is unimportant
 - Small RX antenna is OK. Tuneable loop is perfect
- For some advanced modes, frequency stability can be MORE critical than for microwaves.

PAORDT Mini-Whip

Large receiving Loop (GOAPI)

Made from Waveguide 17

٠

 Has also been used for transmitting (at low power)

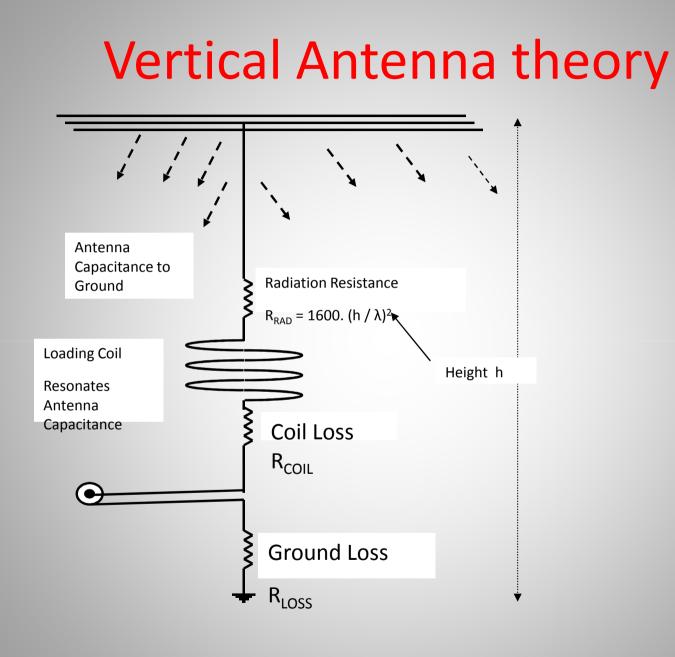
Antennas for Transmit

- Electrically small at 2.2km wavelength so :
 - Inefficient
 - Low bandwidth / narrowband
 - Need to be **BIG**
- But trade off against each other
 - The Chu limit

Antenna Types

- Loops
 - Convenient, easy to resonate (good caps)
 - 4th power law of size / radiation resistance
 - Very inefficient if small
 3m diameter, 2 turns of 8mm copper tubing at 73kHz
 -63dB Gain !!!!!!
 500Hz bandwidth

Vertical



 Easier to build

 But you
 need one
 of these
 >>

— (73 kHz)

Top Hat

- Current tapers in a vertical to zero at the ends
 - A large capacitive top load keeps current in the vertical section almost constant
- 7 metre high Tee antenna at 137kHZ, with a big top hat, so Heff. = 7m (near enough)
- Rrad = $1600x(7/2200)^2 = 0.016\Omega$

Loading Coil

 C_{ANT} is typically 7pF / metre of the <u>total</u> wire used, but with a much lower contribution from bunched parallel wires in top hats

My system is 260pF. Loading coil has to resonate this, L = 5.2mH

Use Wheeler to estimate

 $L(nH) = (D.N)^2 / (0.46 D + Length)$ [mm]

Eg. 150 turns, 300mm diameter, 250mm long. Wound on a fermentation bin

G3LDO and G3XDV with their 73kHz loading coils in 1997

Grounding and radials

- Short antennas The E-field dominates
 - Terminate that as losslessly as possible
 - Proximity Effect with nearby lossy materials
 - Radials, will be electrically short
 - Run under the top hat, and as far out as the antenna is high.

Lots of wire, ground rods, connect to utilities

Use everything possible, do whatever you can.

Losses

- Loading Coil
 - Skin Depth of wire
 - typical coil R_L 6–20 Ω at 137kHz,
 - so dominated by :
- Ground Resistance
 - Who knows! Measure it...
 - 130 180Ω at 137kHz. Lower with bigger antenna. <u>Gain is more than height squared</u>
- Weather dependent, PROXIMITY EFFECT

So - an inefficient antenna

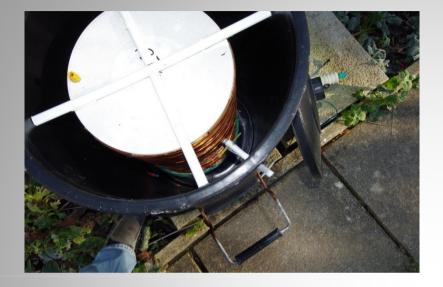
• Loss = $R_{RAD} (16m\Omega) / All losses (12\Omega + 100 \Omega)$ = 0.00014 = -38dB

(and yes, the 10.LOG form is correct)

For 1W ERP we're going to need ~ 6kW of RF

Double the height needs less than 1.5kW Several stations use 10m antennas with 1kW

The Smell of Burning Plastic



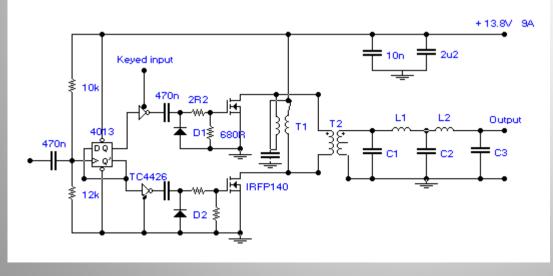
3 137 kHz 7 m 260 pF 150 ohms 700 Watts	Alter figures in BLUE only
2.2 A 0.0032 0.0164 ohms	
=	= -6.4 dBW = 23.6 dBm
	137 kHz 7 m 260 pF 150 ohms 700 Watts 2.2 A 0.0032 0.0164 ohms 5190.7 uH -39.6 dB 0.229 W

• 'JNT System Parameters

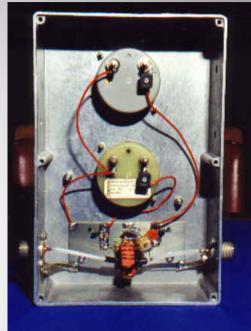
Monopole Radiation Factor Frequency Eff. Height Capacitance Total resistance Power input	3 476 kHz 7 m 260 pF 35 ohms 300 Watts	Alter figures in BLUE only
l _{rf} Fract lambda Rrad	2.9 A 0.0111 0.1977 ohms	
Loading Coil Efficiency EIRP Voltage on Antenna	430.0 uH -22.5 dB 5.083 W = = 3765 V (RMS	STIT GDIN

- Not so bad at 475kHz
 - 300 W legal limit

Transmitters


- Very little commercial equipment you generally have to BUILD stuff!
- Signal source
 - Kits , several DDS sources
 - Crystal osc. Divider. Mix two crystals
 - Few transverter designs, linear modes not used very much, although that may increase.
 - Some transceivers can do a few mW

Power Amps


- Switching Designs using MOSFETS are popular
 - Efficient (elec. bills)
 - Devices are cheap, FETs cost pennies
 - Easy with SMPSU components
 - BUT Constant Envelope Only: CW / MFSK Modes
- Linear with cheap MOSFETs is also easy

100W Class-D (Switching) Amp

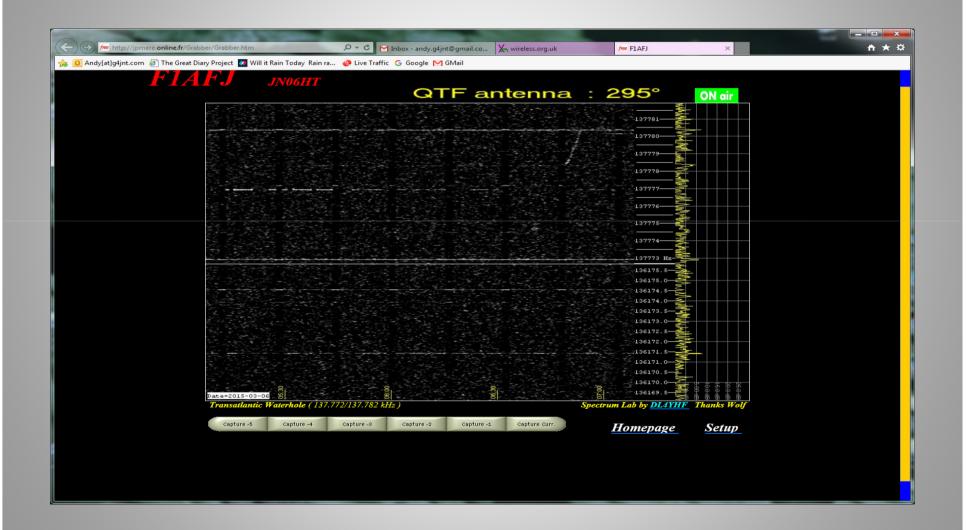
LF SWR Bridge

http://www.g0mrf.com

Two Big Ones

700W 137kHz Class D 400W 475kHz Class E

And a smaller one. 40W linear 80kHz – 2MHz


Test Equipment

- Field Strength
 - Loop in air with calibrated receiver:
 - dBW (EIRP) = $65.8 + P_{RX} (dBm) + 20.LOG(D / (F . A))$ (km, MHz, m², Rx is $50\Omega R_{IN}$)
- Antenna Matching
 - Voltage / Current bridge (or SWR bridge)
 - Phase Meter tuning is sharp, need zero X
 - Or VNWA

Operating

- Plenty of hand keyed on-off stuff on 475kHz
- Some on 137kHz, especially at weekends.
 - But unless you have a high power Tx, expect to only work local UK and perhaps Europeans
- QRSS is very popular
- Use Skeds and the LF reflectors
- WSPRing 15 minute cycle introduced for LF, 9dB more sensitive
- Listen to SAQ special events on 17.2kHz

Grabbers

Overnight WSPR operation

•	Timestar	np	Call	MHz	SNR	Dri	ift Loc	Pwr	Reporte	er Loc	km	az
•	WSPR 2											
•	2016-02-21									IO70ux		274
•	2016-02-21											72
•	2016-02-21									JN68ik		100
•	2016-02-20									JN59nj		96
•	2016-02-20									J001ho		59
•	2016-02-20									IO92ub	147	28
•	2016-02-20	08:16	G4JNT	0.137474	+19	0	IO90iv	0.2	F6CNI	JN19qb	391	120
•	2016-02-20	07:14	G4JNT	0.137474	-17	0	IO90iv	0.2	DF2JP	JO31hh	554	82
•	2016-02-20	06:24	G4JNT	0.137474	-18	0	IO90iv	0.2	2E0ILY	IO82qv	240	338
•	2016-02-20	05:48	G4JNT	0.137474	-13	0	IO90iv	0.2	GOHWW	JO02if	203	42
•	2016-02-20	05:04	G4JNT	0.137474	-27	0	IO90iv	0.2	DL60W	J031kk	572	81
•	2016-02-20	02:22	G4JNT	0.137474	-26	0	IO90iv	0.2	DK7FC	JN49ik	730	99
•	2016-02-19	22:48	G4JNT	0.137475	-22	0	IO90iv	0.2	PA7EY	JO22jj	451	66
•	2016-02-19	21:02	G4JNT	0.137474	-10	0	IO90iv	0.2	MODSZ	I0821s	241	331
•	2016-02-19	20:46	G4JNT	0.137475	-25	0	IO90iv	0.2	GW4NOS	IO81gp	172	300
•	WSPR 15											
•	2016-02-21	07:00	G8IMR	0.137607	-17	0	IO90iv	0.2	2E0ILY	IO82qv	240	338
•	2016-02-21	05:15	G8IMR	0.137607	-35	0	IO90iv	0.2	DL6OW	JO31kk	572	81
•	2016-02-21	05:15	G8IMR	0.137607	-33	0	IO90iv	0.2	SM2DJK	KP03au	1908	33
•	2016-02-20	22:46	G8IMR	0.137607	-29	0	IO90iv	0.2	DF6NM	JN59nj	899	96
•	2016-02-20	22:46	G8IMR	0.137607	-11	0	IO90iv	0.2	G3XKR	IO70ux	210	274
•	2016-02-20	09:16	G8IMR	0.137607	-23	0	IO90iv	0.2	PA7EY	JO22jj	451	66
•	2016-02-20	06:30	G8IMR	0.137606	-5	0	IO90iv	0.2	G3XDV	IO91vt	127	36
•	2016-02-20	06:30	G8IMR	0.137607	-20	0	IO90iv	0.2	DF2JP	JO31hh	554	82
•	2016-02-20	06:30	G8IMR	0.137607	-29	0	IO90iv	0.2	DK7FC	JN49ik	730	99
•	2016-02-20	01:00	G8IMR	0.137607	-23	0	IO90iv	0.2	G6AVK	J001ho	155	59

WSPR on 475kHz As heard by PI4THT

•	2016-02-16	04:06	G8HUH	0.475650	-13 0 IO81mg	1
•	2016-02-15	22:36	DHOPAZ	0.475674	-15 4 JO30nm	0.2
•	2016-02-15	22:24	F1AFJ	0.475704	-18 0 JN06ht	1
•	2016-02-15	21:32	PA3ABK/	2 0.475740	+4 0 JO21it	0.5
•	2016-02-15	21:26	PA3GHJ	0.475725	-260 JO22gb	50
•	2016-02-15	21:20	DK6NI	0.475733	-9 0 JN59ln	0.1
•	2016-02-15	21:00	IW4DXW	0.475796	-17 0 JN64bw	0.5
•	2016-02-15	20:24	G7NKS	0.475700	-10 0 IO92ub	0.05
•	2016-02-15	20:02	DL6TY	0.475670	+3 0 JO44lo	1
•	2016-02-15	19:30	DK6XY	0.475718	-15 0 JO53jv	0.2
•	2016-02-15	17:50	DK7FC	0.475683	+6 0 JN49ik	1
•	2016-02-15	17:46	PA0A	0.475731	+5 0 JO33de	2
•	2016-02-15	16:54	DK2DB	0.475642	-18 0 JN48fw	0.5
•	2016-02-15	16:32	F6GEX	0.475767	-27 0 IN97na	0.5
•	2016-02-15	16:20	DJOABR	0.475665	-19 1 JN68nt	0.2
•	2016-02-15	16:16	DL2WB	0.475778	-24 0 JN39qh	0.2
•	2016-02-15	16:14	DD2UJ	0.475618	-17 -4 JO61wc	0.2
•	2016-02-15	15:54	LA3EQ	0.475776	-25 0 JO28xj	1
•	2016-02-15	15:52	DH5RAE	0.475755	-16 0 JN68qv	0.5
•	2016-02-15	14:54	G3XIZ	0.475621	-15 0 IO92ub	0.05
•	2016-02-15	13:18	DL6II	0.475711	-4 0 JO30nx	0.5
•	2016-02-15	13:10	DF2JP	0.475623	-17 0 JO31hh	1

	PI4THT JO32kf	685 km	77 deg
	PI4THT JO32kf	191	355
	PI4THT JO32kf	752	34
	PI4THT JO32kf	155	72
	PI4THT JO32kf	160	82
	PI4THT JO32kf	412	318
	PI4THT JO32kf	897	336
5	PI4THT JO32kf	489	85
	PI4THT JO32kf	298	208
	PI4THT JO32kf	321	236
	PI4THT JO32kf	336	338
	PI4THT JO32kf	114	160
	PI4THT JO32kf	383	344
	PI4THT JO32kf	804	41
	PI4THT JO32kf	582	313
	PI4THT JO32kf	326	354
	PI4THT JO32kf	498	287
	PI4THT JO32kf	688	175
	PI4THT JO32kf	590	311
5	PI4THT JO32kf	489	85
	PI4THT JO32kf	140	353
	PI4THT JO32kf	103	9

Other Modes

- JT9, a new mode in the WSJT-X suite is gaining in popularity and allows real time QSOs
- Wolf 10 B/s BPSK (needs linear Tx)
- *EbNaut* ultra slow coherent BPSK, needs GPS or Rubidium stability